
An Application-Based Performance Characterization
of the Columbia Supercluster

Rupak Biswas, M. Jahed Djomehri, Robert Hood, Haoqiang Jin, Cetin Kiris, Subhash Saini
NASA Advanced Supercomputing (NAS) Division

NASA Ames Research Center, Moffett Field, CA 94035
{rbiswas,mdjomehri,rhood,hjin,ckiris,ssaini }@mail.arc.nasa.gov

Abstract

Columbia is a 10,240-processor supercluster consist-
ing of 20 Altix nodes with 512 processors each, and
currently ranked as one of the fastest computers in the
world. In this paper, we present the performance char-
acteristics of Columbia obtained on up to four comput-
ing nodes interconnected via the InfiniBand and/or NU-
MAlink4 communication fabrics. We evaluate floating-
point performance, memory bandwidth, message pass-
ing communication speeds, and compilers using a subset
of the HPC Challenge benchmarks, and some of the NAS
Parallel Benchmarks including the multi-zone versions.
We present detailed performance results for three scien-
tific applications of interest to NASA, one from molecu-
lar dynamics, and two from computational fluid dynam-
ics. Our results show that both the NUMAlink4 and In-
finiBand interconnects hold promise for multi-node ap-
plication scaling to at least 2048 processors.

Keywords: SGI Altix, multi-level parallelism, HPC
Challenge benchmarks, NAS Parallel Benchmarks,
molecular dynamics, multi-block overset grids, compu-
tational fluid dynamics

1 Introduction

During the summer of 2004, NASA began the instal-
lation of Columbia, a 10,240-processor SGI Altix su-
percomputer at its Ames Research Center. Columbia
is a supercluster comprised of 20 nodes, each contain-
ing 512 Intel Itanium2 processors and running the Linux
operating system. In October of that year, the machine

c©2005 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or
to allow others to do so, for Government purposes only.

SC|05 November 12-18, 2005, Seattle, Washington, USA
c©2005 ACM 1-59593-061-2/05/0011$5.00

achieved 51.9 Tflop/s on the Linpack benchmark, plac-
ing it second on the November 2004 Top500 list [19]. In
the ensuing time, we have run a variety of benchmarks
and scientific applications on Columbia in an attempt to
critically characterize its parallel performance.

While a previous paper has compared Altix perfor-
mance to other architectures [3], in this paper, we inves-
tigate the effect of several different configuration options
available on Columbia. In particular, we present detailed
performance characteristics obtained on up to four com-
puting nodes interconnected via the InfiniBand and/or
NUMAlink4 communication fabrics. We first evalu-
ate floating-point performance, memory bandwidth, and
message passing communication speeds using a sub-
set of the HPC Challenge benchmarks [8]. Next, we
analyze performance using some of the NAS Parallel
Benchmarks [15], particularly the new multi-zone ver-
sion [10]. Finally, we present detailed performance re-
sults for three scientific applications, one from molec-
ular dynamics, and two from state-of-the-art computa-
tional fluid dynamics (CFD), both compressible and in-
compressible multi-block overset grid Navier-Stokes ap-
plications [4, 12]. One current problem of significant
interest to NASA that involves these applications is the
Crew Exploration Vehicle, which will require research
and development in several disciplines such as propul-
sion, aerodynamics, and design of advanced materials.

2 The Columbia Supercluster

Introduced in early 2003, the SGI Altix 3000 sys-
tems are an adaptation of the Origin 3000, which use
SGI’s NUMAflex global shared-memory architecture.
Such systems allow access to all data directly and ef-
ficiently, without having to move them through I/O or
networking bottlenecks. The NUMAflex design enables
the processor, memory, I/O, interconnect, graphics, and
storage to be packaged into modular components, called
“bricks.” The primary difference between the Altix and
the Origin systems is the C-Brick, used for the proces-
sor and memory. This computational building block for
the Altix 3700 consists of four Intel Itanium2 proces-

1

sors, 8GB of local memory, and a two-controller ASIC
called the Scalable Hub (SHUB). Each C-Brick shares
a peak bandwidth of 3.2 GB/s via the NUMAlink inter-
connection. Each SHUB interfaces to two CPUs, along
with memory, I/O devices, and other SHUBs. The Altix
cache-coherency protocol is implemented in the SHUB,
which integrates both the snooping operations of the Ita-
nium2 and the directory-based scheme used across the
NUMAlink interconnection fabric. A load/store cache
miss causes the data to be communicated via the SHUB
at a cache-line granularity and automatically replicated
in the local cache.

The predominant CPU on Columbia is an implemen-
tation of the 64-bit Itanium2 architecture, operating at
1.5 GHz, and is capable of issuing two multiply-adds
per cycle for a peak performance of 6.0 Gflop/s. The
memory hierarchy consists of 128 floating-point regis-
ters and three on-chip data caches (32KB L1, 256KB
L2, and 6MB L3). The Itanium2 cannot store floating-
point data in L1, making register loads and spills a po-
tential source of bottlenecks; however, a relatively large
register set helps mitigate this issue. The processor im-
plements the Explicitly Parallel Instruction set Comput-
ing (EPIC) technology where instructions are organized
into 128-bit VLIW bundles. The Altix 3700 platform
uses the NUMAlink3 interconnect, a high-performance
custom network with a fat-tree topology that enables the
bisection bandwidth to scale linearly with the number of
processors.

Columbia is configured as a cluster of 20 SGI Altix
nodes (or boxes), each with 512 processors and approx-
imately 1TB of global shared-access memory. Of these
20 nodes, 12 are model 3700 and the remaining eight are
model 3700BX2. The BX2 node is essentially a double-
density version of the 3700. Each BX2 C-Brick thus
contains eight processors, 16GB local memory, and four
SHUBs, doubling the processor count in a rack from 32
to 64 and thereby packing more computational power in
the same space. The BX2 C-Bricks are interconnected
via NUMAlink4, yielding a peak bandwidth of 6.4 GB/s
that is twice the bandwidth between bricks on a 3700.
In addition, five of the Columbia BX2’s use 1.6 GHz
(rather than 1.5 GHz) parts and 9MB L3 caches. Ta-
ble 1 summarizes the main characteristics of the 3700
and BX2 nodes used in Columbia.

Two communication fabrics connect the 20 Altix sys-
tems: an InfiniBand switch [20] provides low-latency
MPI communication, and a 10-gigabit Ethernet switch
provides user access and I/O communications. Infini-
Band is a revolutionary, state-of-the-art technology that
defines very high-speed networks for interconnecting
compute and I/O nodes [9]. It is an open industry
standard for designing high-performance compute clus-

Characteristics 3700 BX2

Architecture NUMAflex, SSI NUMAflex, SSI
Processors 512 512
Packaging 32 CPUs/rack 64 CPUs/rack
Processor Itanium2 Itanium2
Clock/L3 cache 1.5 GHz/6 MB 1.5 GHz/6 MB (a)

1.6 GHz/9 MB (b)
Interconnect NUMAlink3 NUMAlink4
Bandwidth 3.2 GB/s 6.4 GB/s
Memory 1 TB 1 TB
Th. peak perf. 3.07 Tflop/s 3.07 Tflop/s (a)

3.28 Tflop/s (b)

Table 1. Characteristics of the two types of Altix
nodes used in Columbia.

ters of PCs and SMPs. Its high peak bandwidth and
comparable minimum latency distinguish it from other
competing network technologies such as Quadrics and
Myrinet [13]. Four of the 1.6 GHz BX2 nodes are
linked with NUMAlink4 technology to allow the global
shared-memory constructs to significantly reduce inter-
processor communication latency. This 2,048-processor
subsystem within Columbia provides a 13 Tflop/s peak
capability platform.

A number of programming paradigms are supported
on Columbia, including the standard OpenMP and MPI,
SGI SHMEM, and Multi-Level Parallelism (MLP). MPI
and SHMEM are provided by SGI’s Message Pass-
ing Toolkit (MPT), while C/C++ and Fortran compilers
from Intel support OpenMP. The MLP library was devel-
oped by Taft at NASA Ames [18]. Both OpenMP and
MLP can take advantage of the globally shared mem-
ory within an Altix node. Both MPI and SHMEM can
be used to communicate between Altix nodes connected
with the NUMAlink interconnect; however, communi-
cation over the InfiniBand switch requires the use of
MPI. Because of the hardware limitation on the num-
ber of InfiniBand connections through InfiniBand cards
installed on each node, the number of per-node MPI pro-
cesses,k, is confined by

k ≤
√

Ncards ×Nconnections

n− 1

wheren (≥ 2) is the number of Altix nodes involved.
Currently on Columbia,Ncards = 8 per node and
Nconnections = 64K per card. Thus, a pure MPI code
can only fully utilize up to three Altix nodes under the
current setup. A hybrid (e.g. MPI+OpenMP) version of
applications would be required for runs using four or
more nodes.

2

3 Benchmarks and Applications

We utilize a spectrum of microbenchmarks, synthetic
benchmarks, and scientific applications in order to crit-
ically characterize Columbia performance. These are
briefly described in the following subsections.

3.1 HPC Challenge Microbenchmarks

We elected to test basic system performance char-
acteristics such as floating-point operations, memory
bandwidth, and message passing communication speeds
using a subset of the HPC Challenge (HPCC) bench-
mark suite [8]. In particular, we used the following com-
ponents:

• We tested optimum floating-point performance
with DGEMM, a double-precision matrix-matrix
multiplication routine that uses a level-3 BLAS
package on the Altix. The input arrays are sized
so as to use about 75% of the memory available on
the subset of the CPUs being tested.

• The STREAM benchmark component tests mem-
ory bandwidth by doing simple operations on very
long vectors. There are four vector operations mea-
sured: copy, scale by multiplicative constant, add,
and triad (multiply by scalar and add). As with the
DGEMM benchmark, the vectors manipulated are
sized to use about 75% of the memory available.

• We evaluated message passing performance in a
variety of communication patterns with HPCC-
b eff, the HPCC version of the beff benchmark
from the High Performance Computing Center
Stuttgart [7]. The test measures latency and band-
width using ping-pong and two rings: one using
a “natural” ordering where communication takes
place between processes with adjacent ranks in
MPI COMM WORLD, and one using a random
ordering. For ping-pong, we use the “average” re-
sults reported by the benchmark; for the rings, the
benchmark reports a geometric mean of the results
from a number of trials.

While these benchmarks will likely not be completely
indicative of application performance, they can be used
to help explain application timing anomalies when they
occur.

3.2 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) are well-
known problems for testing the capabilities of parallel
computers and parallelization tools. They were derived

from computational fluid dynamics (CFD) codes and
are widely recognized as a standard indicator of parallel
computer performance. The original NPB suite consists
of five kernels and three simulated CFD applications,
given as a “pencil-and-paper” specifications in [1]. The
five kernels mimic the computational core of five nu-
merical methods, while the three simulated applications
reproduce much of the data movement and computation
found in full CFD codes. Reference implementations
were subsequently provided as NPB2 [2], using MPI as
the parallel programming paradigm, and later expanded
to other programming paradigms (such as OpenMP).

Recent effort in NPB development was focused on
new benchmarks, including the new multi-zone version,
called NPB-MZ [10]. While the original NPB exploits
fine-grain parallelism in a single zone, the multi-zone
benchmarks stress the need to exploit multiple levels of
parallelism for efficiency and to balance the computa-
tional load.

For evaluating the Columbia system, we selected a
subset of the benchmarks: three kernels (MG, CG, and
FT), one simulated application (BT), and two multi-zone
benchmarks (BT-MZ and SP-MZ) [2, 10]. These cover
five types of numerical methods found in many scientific
applications. Briefly, MG (multi-grid) tests long- and
short- distance communication, CG (conjugate gradi-
ent) tests irregular memory access and communication,
FT (fast Fourier transform) tests all-to-all communica-
tion, BT (block-triadiagonal solver) tests nearest neigh-
bor communication, and BT-MZ (uneven sized zones)
and SP-MZ (even sized zones) test both coarse- and fine-
grain parallelism and load balance. For our experiments,
we use both MPI and OpenMP implementations of the
four original NPBs and the hybrid MPI+OpenMP imple-
mentation of the NPB-MZ from the latest NPB3.1 distri-
bution [15]. To stress the processors, memory, and net-
work of the Columbia system, we introduced two new
classes of problem sizes for the multi-zone benchmarks:
Class E (4096 zones, 4224×3456×92 aggregated grid
size) and Class F (16384 zones, 12032×8960×250 ag-
gregated grid size).

3.3 Molecular Dynamics Simulations

Molecular dynamics simulation [16] is a powerful
technique for studying the structure of solids, liquids and
gases. It involves calculating the forces acting on the
atoms in a molecular system using Newton’s equations
of motion and studying their trajectories as a function
of time. After integrating for some time when sufficient
information on the motion of the individual atoms has
been collected, one uses statistical methods to deduce
the bulk properties of the material. These properties
may include the structure, thermodynamics, and trans-

3

port properties. In addition, molecular dynamics can be
used to study the detailed atomistic mechanisms under-
lying these properties and compare them with theory. It
is a valuable computational tool to bridge between ex-
periment and theory.

In our Columbia performance study we use a generic
molecular dynamics code based on the Velocity Verlet
algorithm, a sophisticated integrator designed to further
improve the velocity evaluations. However, it is com-
putationally more expensive than other integration algo-
rithms like Verlet or leap-frog schemes. The Velocity
Verlet algorithm provides both the atomic positions and
velocities at the same instant of time, and therefore is
regarded as the most complete form of the Verlet algo-
rithm.

To parallelize the algorithm, we use a spatial de-
composition method, in which the physical domain is
subdivided into small three-dimensional boxes, one for
each processor. At each step, the processors compute
the forces and update the positions and velocities of all
the atoms within their respective boxes. In this method,
a processor needs to know the locations of atoms only
in nearby boxes; thus, communication is entirely local.
Each processor uses two data structures: one for the
atoms in its spatial domain and the other for atoms in
neighboring boxes. The first data structure stores atomic
positions and velocities, and neighbor linked lists to per-
mit easy deletions and insertions as atoms move between
boxes. The second data structure stores only position co-
ordinates of atoms in neighboring boxes. The potential
energy between two atoms is modeled by the Lennard-
Jones potential. The simulation starts with atoms on a
force cubic center (fcc) lattice with randomized veloc-
ities at a given temperature. We used a cutoff radius
of 5.0 beyond which interactions between atoms are not
calculated.

The memory requirement for this code is three po-
sition coordinates, three velocity coordinates, and three
acceleration coordinates for each particle. In addition,
buffers are required for sending and receiving double
precision data for each of the boundary atoms to be sent
to the neighbors (up, down, east, west, north and south)
at the end of each time step. Wall clock time depends on
various factor such as cut-off distance, size of the step
and number of steps.

3.4 INS3D: Turbopump Flow Simulations

Computations for unsteady flow through a full scale
low-pressure rocket pump are performed utilizing the
INS3D computer code [11]. Liquid rocket turbopumps
operate under severe conditions and at very high rota-
tional speeds. The low-pressure-fuel turbopump creates
transient flow features such as reverse flows, tip clear-

ance effects, secondary flows, vortex shedding, junction
flows, and cavitation effects. Flow unsteadiness origi-
nated from the inducer is considered to be one of the ma-
jor contributors to the high frequency cyclic loading that
results in cycle fatigue. The reverse flow originated at
the tip of an inducer blade travels upstream and interacts
with the bellows cavity. To resolve the complex geom-
etry in relative motion, an overset grid approach is em-
ployed where the problem domain is decomposed into a
number of simple grid components [4]. Connectivity be-
tween neighboring grids is established by interpolation
at the grid outer boundaries. Addition of new compo-
nents to the system and simulation of arbitrary relative
motion between multiple bodies are achieved by estab-
lishing new connectivity without disturbing the existing
grids.

The computational grid used for the experiments re-
ported in this paper consisted of 66 million grid points
and 267 blocks (or zones). Details of the grid system are
shown in Fig. 1. Fig. 2 displays particle traces colored
by axial velocity entering the low-pressure fuel pump.
The blue particles represent regions of positive axial ve-
locity, while the red particles indicate four back flow re-
gions. The gray particles identify the stagnation regions
in the flow.

Figure 1. Surface grids for the low pressure fuel
pump inducer and the flowliner.

The INS3D code solves the incompressible Navier-
Stokes equations for both steady-state and unsteady
flows. The numerical solution requires special atten-
tion in order to satisfy the divergence-free constraint on
the velocity field. The incompressible formulation does
not explicitly yield the pressure field from an equation
of state or the continuity equation. One way to avoid
the difficulty of the elliptic nature of the equations is to

4

Figure 2. Instantaneous snapshot of particle traces
colored by axial velocity values.

use an artificial compressibility method that introduces
a time-derivative of the pressure term into the continuity
equation. This transforms the elliptic-parabolic partial
differential equations into the hyperbolic-parabolic type.
To obtain time-accurate solutions, the equations are it-
erated to convergence in pseudo-time for each physical
time step until the divergence of the velocity field has
been reduced below a specified tolerance value. The
total number of sub-iterations required varies depend-
ing on the problem, time step size, and the artificial
compressibility parameter. Typically, the number ranges
from 10 to 30 sub-iterations. The matrix equation is
solved iteratively by using a non-factored Gauss-Seidel
type line-relaxation scheme, which maintains stability
and allows a large pseudo-time step to be taken. More
detailed information about the application can be found
in [11, 12].

Single-node performance results reported in this pa-
per were obtained for computations carried out using
the Multi-Level Parallelism (MLP) paradigm for shared-
memory systems [18]. All data communications at the
coarsest and finest levels are accomplished via direct
memory referencing instructions. The coarsest level par-
allelism is supplied by spawning off independent pro-
cesses via the standard UNIX fork. A library of rou-
tines is used to initiate forks, to establish shared memory
arenas, and to provide synchronization primitives. The
boundary data for the overset grid system is archived in
the shared memory arena by each process. Fine grain
parallelism is obtained by using OpenMP compiler di-
rectives. In order to run a 66 million grid point case the
code requires 100 GB of memory and approximately 80
microseconds per grid point per iteration.

Performance results on multiple Altix nodes were
obtained using the hybrid MPI+OpenMP version of
INS3D. The hybrid code uses an MPI interface for
coarse grain parallelism, and OpenMP directives for
fine-grain parallelism. Implementation of the parallel

strategy starts by assembling the grid zones into groups,
each of which is mapped onto an MPI process. Dur-
ing computation overlapping grid connectivity informa-
tion is passed between groups through master-worker
communications. At each stage when overlapping grid
communication is performed, each group sends its in-
formation to a master group. Once the master group
has received and processed all of the information, the
data is sent to the other groups and computation pro-
ceeds. While this is not the most efficient way of utiliz-
ing MPI communication and an alternative version using
point-to-point communication exists, we have chosen
to report results for the MPI+OpenMP code using the
master-worker communication strategy. Point-to-point
communication patterns are explored more fully with
OVERFLOW-D, which is described in the next section.

3.5 OVERFLOW-D: Rotor Vortex Simulations

For solving the compressible Navier-Stokes equa-
tions, we selected the NASA production code called
OVERFLOW-D [14]. The code uses the same overset
grid methodology [4] as INS3D to perform high-fidelity
viscous simulations around realistic aerospace configu-
rations. OVERFLOW-D is popular within the aerody-
namics community due to its ability to handle complex
designs with multiple geometric components. It is ex-
plicitly designed to simplify the modeling of problems
when components are in relative motion. The main com-
putational logic at the top level of the sequential code
consists of a time-loop and a nested grid-loop. Within
the grid-loop, solutions to the flow equations are ob-
tained on the individual grids with imposed boundary
conditions. Overlapping boundary points or inter-grid
data are updated from the previous time step using an
overset grid interpolation procedure. Upon completion
of the grid-loop, the solution is automatically advanced
to the next time step by the time-loop. The code uses
finite difference schemes in space, with a variety of im-
plicit/explicit time stepping.

The hybrid MPI+OpenMP version of OVERFLOW-
D takes advantage of the overset grid system, which
offers a natural coarse-grain parallelism [5]. A bin-
packing algorithm clusters individual grids into groups,
each of which is then assigned to an MPI process. The
grouping strategy uses a connectivity test that inspects
for an overlap between a pair of grids before assign-
ing them to the same group, regardless of the size of
the boundary data or their connectivity to other grids.
The grid-loop in the parallel implementation is subdi-
vided into two procedures: a group-loop over groups,
and a grid-loop over the grids within each group. Since
each MPI process is assigned to only one group, the
group-loop is executed in parallel, with each group per-

5

forming its own sequential grid-loop. The inter-grid
boundary updates within each group are pperformed as
in the serial case. Inter-group boundary exchanges are
achieved via MPI asynchronous communication calls.
The OpenMP parallelism is achieved by the explicit
compiler directives inserted at the loop level. The logic
is the same as in the pure MPI case, only the computa-
tionally intensive portion of the code (i.e. the grid-loop)
is multi-threaded via OpenMP.

OVERFLOW-D was originally designed to exploit
vector machines. Because Columbia is a cache-based
superscalar architecture, modifications were necessary
to improve performance. The linear solver of the ap-
plication, called LU-SGS, was reimplemented using a
pipeline algorithm [5] to enhance efficiency which is
dictated by the type of data dependencies inherent in the
solution algorithm.

Our experiments reported here involve a Navier-
Stokes simulation of vortex dynamics in the complex
wake flow region around hovering rotors. The grid sys-
tem consisted of 1679 blocks of various sizes, and ap-
proximately 75 million grid points. Fig. 3 shows a sec-
tional view of the test application’s overset grid system
(slice through the off-body wake grids surrounding the
hub and rotors) while Fig. 4 shows a cut plane through
the computed wake system including vortex sheets as
well as a number of individual tip vortices. A complete
description of the underlying physics and the numerical
simulations pertinent to this test problem can be found
in [17].

The memory requirement for OVERFLOW-D is
about 40 words per grid point; thus approximately

Figure 3. A sectional view of the overset grid sys-
tem.

Figure 4. Computed vorticity magnitude contours
on a cutting plane located 45o behind the rotor
blade.

22 GB are necessary to run the test problem used in this
paper. Note that this requirement gradually increases
with the number of processors because of grid and so-
lution management overhead. The MPI communication
pattern is point-to-point. Due to the overset grid struc-
ture, disparate sizes of grid blocks, and grouping strat-
egy for load balancing, no nearest neighbor techniques
can be employed. Thus, each MPI process communi-
cates with all other processes. The communication time
is typically 20% of the execution time, but could vary
significantly with the physics of the problem, its domain
and topology, the nature of overlapping blocks, and the
number of processors used.

4 Performance Results

We conducted several experiments using mi-
crobenchmarks, synthetic benchmarks, and full-scale
applications to obtain a detailed performance character-
ization of Columbia. Results of these experiments are
presented in the following subsections.

4.1 3700 vs. BX2

In comparing the performance of the 3700 with two
types of BX2, we are assessing the impact of both im-
proved processor speed (coupled with larger L3 cache)
and processor interconnect. As a shorthand notation, we
will call the BX2 with 1.5 GHz CPUs and 6MB caches
a “BX2a”. The BX2 with faster clock and larger cache
is denoted “BX2b”.

4.1.1 HPC Challenge Microbenchmarks

The DGEMM and STREAM results are shown in Fig. 5.
The performance of the DGEMM benchmark showed a
correlation with processor speed and cache size rather

6

5.0

5.2

5.4

5.6

5.8

6.0
G

flo
ps

/s
ec

1 4 16 64 256
Number of CPUs

DGEMM

2.0

2.5

3.0

3.5

4.0

G
B

yt
es

/s
ec

1 4 16 64 256
Number of CPUs

 3700
 BX2a
 BX2b

STREAM (Triad)

Figure 5.DGEMM and STREAM results on three
types of the Columbia nodes.

than processor interconnect. When run on a BX2b, per-
formance (5.75 GFlop/s) improved by 6% versus runs
on 3700 or BX2a, which were essentially identical.

The most important result from the STREAM Triad
benchmark is the precipitous drop in performance go-
ing up from one processor. This is quite clearly due
to sharing of memory bandwidth when multiple proces-
sors are used. We will investigate this behavior more
fully in Section 4.2. The STREAM Triad benchmark
showed 1% better performance on a 3700 versus either
type of BX2. Nothing about published architecture dif-
ferences indicates why this might be the case. The other
STREAM measures, Copy, Scale, and Add, show simi-
lar behavior and are not shown.

The HPCC-beff results are shown in Fig. 6. For
Ping-Pong and Natural Ring, the latencies are remark-
ably consistent between 3700 and both models of BX2.
The Random Ring latency test shows that as average
communication distances become further apart (as pro-

2.0

4.0

6.0

 3700
 BX2a
 BX2b

Average Ping-Pong

Latency

2.0

4.0

6.0

µ
se

c

Natural Ring

2.0

4.0

6.0

4 8 16 32 64 128 256 512
Number of CPUs

Random Ring

0.0

0.5

1.0

1.5

2.0
Average Ping-Pong

Bandwidth

0.0

0.5

1.0

1.5

G
B

yt
es

/s
ec

Natural Ring

0.0

0.5

1.0

1.5

4 8 16 32 64 128 256 512
Number of CPUs

Random Ring

Figure 6. Latency and bandwidth tests using
HPCC-beff on three types of the Columbia nodes.

cessor counts increase), the interconnect network im-
provements in the BX2 become apparent.

Bandwidth was correlated either to processor speed
or interconnect, depending on the locality of the com-
munication tested. On the Ping-Pong test, where there
is some distance between communicating pairs of pro-
cesses, the interconnect used plays a key role in the
bandwidth. In the case of the Natural Ring, where lo-
cal communication predominates, processor speed is the
determining factor. In the Random Ring, where the com-
munications are mostly remote, both processor speed
and interconnect show effects for bandwidth.

4.1.2 NAS Parallel Benchmarks

Fig. 7 shows the per-processor Gflop/s rates reported
from runs of both MPI and OpenMP versions of CG,
FT, MG, and BT benchmarks on three types of the
Columbia nodes, a horizontal line indicating linear scal-
ing. MPI versions of the benchmarks employ a paral-
lelization strategy of domain decomposition in multi-
ple dimensions to distribute data locally onto each pro-
cessor, while OpenMP versions simply exploit loop-
level parallelism in a shared-address space. These ap-
proaches are representative of real world applications
where a serial program is parallelized using either MPI
or OpenMP.

As was seen from the HPCC microbenchmarks in the
previous section, the double density packing for BX2

0.0

0.2

0.4

0.6

0.8

1.0

CG Class B

MPI OMP
 :
 :
 :

BX2b, 1.6G/9M
BX2a, 1.5G/6M
3700, 1.5G/6M

FT Class B

0.0

0.5

1.0

1.5G
flo

ps
/s

ec
/C

P
U

1 4 16 64 256

Number of CPUs

MG Class B

1 4 16 64 256

BT Class B

Figure 7. NPB performance comparison on three
types of the Columbia nodes.

7

produces shorter latency and higher bandwidth in NU-
MAlink access. The effect of doubled network band-
width of BX2 on OpenMP performance is evident: the
four OpenMP benchmarks scaled much better on both
types of BX2 than on 3700 when the number of threads
is four or more. With 128 threads, the difference can be
as large as 2x for both FT and BT. The bandwidth ef-
fect on MPI performance is less profound until a larger
number of processes (≥32) when communication starts
to dominate. Observe that on 256 processors, FT runs
about twice as fast on BX2 than on 3700, indicating the
importance of bandwidth for the all-to-all communica-
tion used in the benchmark.

A bigger cache (9MB) in the BX2b node produced
substantial performance improvement for the MPI codes
for large number of processors (e.g. the peaks at 64
CPUs for MG and BT) when the data can fit into lo-
cal cache on each processor. On the other hand, no sig-
nificant difference for the OpenMP codes is observed,
primarily because the cost of accessing shared data from
each OpenMP thread increases substantially as the num-
ber of CPUs increases, which overwhelms any benefit
from a larger cache size. In the case of MPI, the falloff
from the peak is due to the increased communication-
to-computation ratio (a fixed problem size implies data
per processor is decreasing as the number of proces-
sors increases) as occurred earlier in the OpenMP codes.
The slightly larger processor speed of BX2b (1.6 GHz)
brings only marginal performance gain, as illustrated
from the OpenMP FT and BT results.

Although OpenMP versions of NPB demonstrated
better performance on a small number of CPUs, access-
ing local data and carefully managing communications
in the MPI codes produced significantly better scaling
than the OpenMP codes that use a simple loop paral-
lelization strategy and cannot be easily optimized for ac-
cessing shared data.

4.1.3 Molecular Dynamics

The molecular dynamics simulation code was run on
both 3700 and BX2b nodes of Columbia. This is a weak
scaling exercise: we assign 64,000 atoms to each pro-
cessor, and thus scale the problem size with the proces-
sor count. For example, on 512 processors, we simu-
lated 32 million atoms. The simulation was run for 100
steps. The average runtime per iteration is shown in Ta-
ble 2. The results show almost perfect scalability all the
way up to 512 processors. (At the maximum size, it
should be noted that the computation experiences pertur-
bation from system software.) The differences between
the 3700 times and BX2b times can be attributed to pro-
cessor speed (∼6%).

Molecular Dynamics
Wallclock time/step (sec)

P # particles 3700 BX2b

1 64,000 21.92 20.19
2 128,000 21.93 20.20
4 256,000 21.86 20.25
8 512,000 21.91 20.24
16 1,024,000 21.87 20.27
32 2,048,000 22.03 20.25
64 4,096,000 21.91 20.29
128 8,192,000 22.20 20.25
256 16,384,000 21.68 20.31
512 32,768,000 22.29 21.27

Table 2. Molecular dynamics simulation timings
on 3700 and BX2b.

4.1.4 INS3D

Computations to test the scalability of the INS3D code
on Columbia were performed using the 3700 and BX2b
processors. Initial computations using one MLP group
and one OpenMP thread with the various processor and
compiler options were used to establish the baseline run-
time for one physical time step of the solver, where 720
such time steps are required to complete one inducer ro-
tation. Next, a fixed number of 36 MLP groups was cho-
sen along with various numbers of OpenMP threads (1,
2, 4, 8, 12, and 14). The average runtime per iteration is
shown in Table 3.

INS3D
3700 BX2b

P Exec (sec) Exec (sec) Ratio

1 39230.0 26430.0 1.48
36 (36×1) 1223.0 825.2 1.48
72 (36×2) 796.0 508.4 1.57
144 (36×4) 554.2 331.8 1.67
288 (36×8) 454.7 287.7 1.58
432 (36×12) 409.1 259.5 1.58
504 (36×14) 394.2 247.6 1.58

Table 3. INS3D performance on 3700 and BX2b.

Observe that the BX2b demonstrates approximately
50% faster iteration time. While this is partly due to the
faster clock and larger cache of the BX2b, the primary
reason is that the BX2 interconnect has double the band-
width of the one on the 3700.

Note the scalability for a fixed number of MLP
groups and varying OpenMP threads is good, but be-
gins to decay as the number of threads increases beyond
eight. Further scaling can be accomplished by fixing
the number of threads and varying the number of MLP
groups until the load balancing begins to fail. Unlike
varying the OpenMP threads which does not affect the
convergence rate of INS3D, varying the number of MLP

8

groups may deteriorate convergence. This will lead to
more iterations even though faster runtime per iteration
is achieved.

4.1.5 OVERFLOW-D

The performance of OVERFLOW-D was also evaluated
on Columbia using the 3700 and BX2b processors. Ta-
ble 4 shows communication and total execution times
of the application per time step when using the 8.1 In-
tel Fortran compiler. Note that a typical production run
requires on the order of 50,000 such time steps. For var-
ious number of processors we report the time from the
best combination of processes and threads.

OVERFLOW-D
3700 BX2b

Comm Exec Comm Exec
P (sec) (sec) (sec) (sec)

1 0.22 151.2 0.21 126.4
4 (4×1) 1.2 38.4 0.82 32.0

16 (16×1) 2.4 16.2 0.41 9.0
32 (32×1) 1.9 7.8 0.42 4.6
64 (64×1) 1.6 5.5 0.45 2.5

128 (128×1) 1.0 4.4 0.36 1.6
256 (128×2) 1.0 3.1 0.42 1.3
508 (254×2) 1.9 3.8 0.70 1.1

Table 4. OVERFLOW-D performance on 3700
and BX2b.

Observe from Table 4 that execution time on BX2b is
significantly smaller compared to 3700 (e.g. more than a
factor of 3x on 508 CPUs). On average, OVERFLOW-D
runs almost 2x faster on the BX2b than the 3700. In ad-
dition, the communication time is also reduced by more
than 50%.

The performance scalability on the 3700 is reason-
ably good up to 64 processors, but flattens beyond 256.
This is due to the small ratio of grid blocks to the number
of MPI tasks that makes balancing computational work-
load extremely challenging. With 508 MPI processes
and only 1679 blocks, it is difficult for any grouping
strategy to achieve a proper load balance. Various load
balancing strategies for overset grids are extensively dis-
cussed in [6].

Another reason for poor 3700 scalability on large
processor counts is insufficient computational work per
processor. This can be verified by examining the ratio of
communication to execution time in Table 4. This ratio
is about 0.3 for 256 processors, but increases to more
than 0.5 on 508 CPUs. For our test problem consist-
ing of 75 million grid points, there are only about 150
thousand grid points per MPI task, which is too little for

Columbia’s fast processors compared to the communica-
tion overhead. The test problem used here was initially
built for production runs on platforms having fewer pro-
cessors with smaller caches and slower clock rates.

Scalability on the BX2b is significantly better. For
example, OVERFLOW-D efficiency for 128, 256, and
508 processors is 61%, 37%, and 27% (compared to
26%, 19%, and 7% on the 3700). In spite of the same
load imbalance problem, the enhanced bandwidth on the
BX2b significantly reduces the communication times.
The increased bandwidth is particularly important at the
coarse-grain level of OVERFLOW-D, which has an all-
to-all communication pattern every time step. This is
consistent with our experiments conducted on the NPBs
and reported in Sec 4.1.2. The reduction in the BX2b
computation time can be attributed to its larger L3 cache
and maybe its faster CPU speed.

4.2 CPU “Stride”

As seen in Section 4.1.1, the STREAM benchmarks
scale linearly from two to 500 processors. In fact, during
tests conducted in October 2004 on 15 of the 20 nodes
of Columbia, we observed, not unexpectedly, that the
results scaled linearly from two to 7500 CPUS—with
Triad achieving∼2 GB/s per CPU. When run on a single
processor, however, the benchmark registers∼3.8 GB/s.
We hypothesize that this is due to each memory bus be-
ing shared by two processors. To verify that and to un-
derstand what other behavior might be due to that (or
other resource) sharing, we ran the HPCC benchmarks
in a “spread out” or strided fashion, using every second
or every fourth CPU.

The DGEMM benchmark demonstrated differences
of less than 0.5%—showing that this benchmark is not
substantially affected by sharing the memory bus. As
expected, at a CPU stride of either 2 or 4, the STREAM
benchmark produced per-processor numbers equivalent
to the 1-CPU case. In the case of Triad, the bandwidth is
1.9x higher than when processes are assigned to CPUs
in a dense fashion. The latency-bandwidth results were
less dramatic. The numbers for Ping-Pong and Random
Ring were slightly worse for spread-out CPUs. The re-
sults for Natural Ring were less conclusive. There was a
small improvement in latency but none for bandwidth.

4.3 Pinning

Application performance on NUMA architectures
like an Altix node depends on data and thread placement
onto CPUs. Improper initial data placement or unwanted
migration of threads between processors can increase
memory access time, thus degrading performance. The

9

performance impact of using thread-to-processor pin-
ning on applications, in particular hybrid codes, can
sometimes be substantial. This is illustrated by the re-
sults shown in Fig. 8 for the hybrid MPI+OpenMP SP-
MZ code running with and without pinning. Each curve
is associated with runs for a given total number of CPUs,
but varying the number of OpenMP threads per MPI
process. Observe that pinning improves performance
substantially in the hybrid mode when processes spawn
multiple threads. The impact becomes even more pro-
found as the number of CPUs increases. Pure process
mode (e.g. 64×1) is less influenced by pinning.

2

4

8

16

32

64

128

256

G
flo

ps
/s

ec

1 2 4 8 16 32 64
Number of Threads/proc

 64 CPUs, no pinning
 64 CPUs, pinning
 128 CPUs, no pinning
 128 CPUs, pinning

SP-MZ Class C

Figure 8. Pinning versus no pinning for SP-MZ
Class C running on BX2b.

A user has at least three different methods for pinning
on the Altix:

1. Set environment variables (MPI DSMDISTRI
BUTEandMPI DSMCPULIST) for MPI codes,

2. Use the data placement tool,dplace , for either
MPI or OpenMP codes, and/or

3. Insert system calls in the user’s code, in particular,
for hybrid implementations.

All other results reported in this paper have pinning ap-
plied, either using method 2 or a combination of meth-
ods 2 and 3.

4.4 Compiler Versions

There are at least four different versions of the Intel
compilers installed on the Columbia system: 7.1(.042),
8.0(.070), 8.1(.026), and 9.0(.012)beta. Although 8.1 is
the latest official release, the default compiler is still set
to 7.1 for various reasons. A user can apply themodule
command to select a particular version of the compiler.
For evaluation purposes, a beta version of the 9.0 com-
piler is also included.

The performance impact of different compiler ver-
sions was examined with the four OpenMP NPB bench-
marks and the results are shown in Fig. 9. All tests were

1

2

4

8

16

32

G
flo

ps
/s

ec

CG Class B FT Class B

 7.1-compiler
 8.0-compiler
 8.1-compiler
 9.0b-compiler

2

4

8

16

32

64

4 8 16 32 64 128 256
Number of CPUs

MG Class B

4 8 16 32 64 128 256

BT Class B

Figure 9. Performance comparison of four com-
piler versions.

conducted on a BX2b node with the-O3 -openmp
compilation flag. We noted that the compiler perfor-
mance seems to be application dependent, although the
8.0 version produced the worst results in most cases. All
the compilers gave similar results on the CG benchmark.
The beta version of 9.0 performed very well on FT. For
MG, between 32 and 128 threads (or CPUs) the 8.1 and
9.0b compilers outperformed the 7.1 and 8.0; however,
below 32 threads, the 7.1 and 8.0 compilers performed
20–30% better than the other two. The scaling also turns
around above 128 threads.

Overall, the 7.1 compiler produced consistently bet-
ter performance for most the benchmarks, in particular
for a small number of threads. As a result, 7.1 was used
for the remaining NPB tests in this report.

Using the BX2b processor, the INS3D flow solver
was compiled and run using both the 7.1 and 8.1 ver-
sions of the Fortran compiler with negligible difference
in runtime per iteration (see Table 5). Evaluations for

INS3D OVERFLOW-D
P 7.1 (sec) 8.1 (sec) P 7.1 (sec) 8.1 (sec)

1 26430.0 25637.1 1 111.3 151.2
4 28.4 38.4

16 11.2 16.2
36 825.2 783.8 32 6.5 7.8
72 508.4 487.7 64 5.1 5.5

144 331.8 324.4 128 4.5 4.4
288 287.7 270.4 256 3.1 3.1
504 247.6 244.9 508 3.7 3.8

Table 5.INS3D and OVERFLOW-D performance
using Intel Fortran compilers 7.1 and 8.1

10

OVERFLOW-D were only performed on the 3700 node.
Timing results with 7.1 are superior to those with 8.1 by
20–40% when running on less than 64 processors, but
almost identical on larger counts.

4.5 Processes and Threads

We examined the performance of hybrid codes un-
der various MPI process and OpenMP thread combina-
tions within one Altix node. The results for the BT-MZ
benchmark are shown in Fig. 10. For a given number
of OpenMP threads (left panel in Fig. 10), MPI scales
very well, almost linearly up to the point where load im-
balance becomes a problem. On the other hand, for a
given number of MPI processes (right panel of Fig. 10),
OpenMP scaling is very limited: except for two threads,
OpenMP performance drops quickly as the number of
threads increases.

1

2

4

8

16

32

64

128

256

512

G
flo

ps
/s

ec

1 4 16 64 256
Number of CPUs

 64 omp
 32 omp
 16 omp
 8 omp
 4 omp
 2 omp
 1 omp

BT-MZ Class C
fixed number of threads

1 4 16 64 256

 256 mpi
 128 mpi
 64 mpi
 32 mpi
 16 mpi
 8 mpi
 4 mpi
 2 mpi
 1 mpi

BT-MZ Class C
fixed number of processes

Figure 10. Effects of varying processes and
threads on the BT-MZ benchmark.

4.6 Multinode Execution

We next reran a subset of our experiments on up to
four BX2b Altix nodes. These results are presented in
the following subsections.

4.6.1 HPC Challenge Microbenchmarks

In the tests of MPI latency and bandwidth (see Fig. 11) it
is clear that NUMAlink4 generally performs better than
InfiniBand between nodes. The latency results show a
substantial penalty for InfiniBand across two nodes and
even worse performance across four nodes. In the case
of Ping-Pong, the extra penalty for four nodes can prob-
ably be explained by the increase in the number of “off-
node” pairs that get tested. The Natural Ring latency re-
sults show a smaller penalty for the increase from two to

10

20

30

 IB2
 IB4
 XPM2
 XPM4

Average Ping-Pong

Latency

0

10

20

30

µs
ec

Natural Ring

0

100

200

300

64 128 256 512 1024 2048
Number of CPUs

Random Ring

0.5

1.0

1.5
Average Ping-Pong

Bandwidth

0.5

1.0

1.5

G
B

yt
es

/s
ec

Natural Ring

0.0

0.5

1.0

1.5

64 128 256 512 1024 2048
Number of CPUs

Random Ring

Figure 11. Latency and bandwidth tests on the
two inter-node communication fabrics. IB2/IB4
indicates two-/four-node runs using InfiniBand.
XPM2/XPM4 indicates two-/four-nodes using
NUMAlink4.

four nodes. This decreased penalty is understandable be-
cause the benchmark reports theworst-caseprocess-to-
process latency for the entire ring communication, while
we use anaveragepoint-to-point latency in Ping-Pong.

The bandwidth results for Ping-Pong show a similar
correlation to out-of-node communications. Since we
are reporting the average of a series of point-to-point
bandwidth experiments, there is a falloff in InfiniBand
performance from two to four because the likelihood of
a non-local pairing increases.

For Natural Ring, the two- and four-node tests
yielded similar results. This is not surprising, because
there are only two or four pairs of processes communi-
cating across a box boundary. In fact, at 1008 CPUs,
the InfiniBand numbers are better than the NUMAlink4
numbers. This is likely due to moving the off-box com-
munications from a congested fabric to an essentially
empty one.

The latency and bandwidth results from the Random
Ring tests show problems with scalability of InfiniBand.
While it is capable of good results on the relatively
sparse communication patterns of Ping-Pong and Nat-
ural Ring, the dense pattern of Random Ring seems to
expose a limitation. In ongoing work, we will be exper-
imenting with configuration parameters to try to see if
the results can be improved.

11

4.6.2 NAS Parallel Benchmarks

The hybrid MPI+OpenMP codes of BT-MZ and SP-
MZ were also tested across four Columbia nodes con-
nected with both the NUMAlink4 network and the In-
finiBand switch. We used the Class E problem (4096
zones, 1.3 billion aggregated grid points) for these tests.
The top row of Fig. 12 compares the per-CPU Gflop/s
rates obtained from runs using NUMAlink4 with those
from within a single Altix BX2b node. The two sets of
data represent runs with one and two OpenMP threads
per MPI process, respectively. For 512 CPUs or less,
the NUMAlink4 results are comparable to or even bet-
ter than the in-node results. In particular, the perfor-
mance of 512-processor runs in a single node dropped
by 10–15%, primarily because these runs also used the
CPUs that were allocated for systems software (called
boot cpuset), which interfered with our tests. Reducing
the number of CPUs to 508 improves the BT-MZ perfor-
mance within a node.

1.2

1.3

1.4

1.5

1.6

G
flo

ps
/s

ec
/C

P
U

508

512

BT-MZ Class E

0.4

0.5

0.6

0.7

0.8

 1 omp, in-node
 2 omp, in-node
 1 omp, XPM
 2 omp, XPM

SP-MZ Class E

256

512

1024

2048

G
flo

ps
/s

ec

128 256 512 1024 2048
Number of CPUs

BT-MZ Class E

64

128

256

512

1024

128 256 512 1024 2048

 XPM
 IB, mpt1.11r
 IB, mpt1.12b

SP-MZ Class E

Figure 12.Comparison of NPB-MZ performance
under three different networks—in-node, NUMA-
link4 (XPM), and InfiniBand (IB).

Since MPI is used for coarse-grain parallelism among
zones for the hybrid implementations, load balancing for
SP-MZ is trivial as long as the number of zones is divis-
ible by the number of MPI processes. The uneven-size
zones in BT-MZ allows more flexible choice of the num-
ber of MPI processes; however, as the number of CPUs
increases, OpenMP threads may be required to get better
load balance (and therefore better performance). This
is evident from the BT-MZ results in Fig. 12. There
is about 11% performance improvement from runs us-
ing two OpenMP threads versus one (e.g. 256×2 vs.
512×1) for the SP-MZ benchmark. This effect could be
attributed to less MPI communication when two threads
are used. The performance drop for SP-MZ at 768 and

1536 processors can be explained by load imbalance for
these CPU counts.

The bottom row of Fig. 12 compares the total Gflop/s
rates from runs using NUMAlink4 with those from us-
ing the InfiniBand, taking the best process-thread com-
binations. Observe a close-to-linear speedup for BT-
MZ. The InfiniBand results are only about 7% worse.
On the other hand, we noticed anomaly in InfiniBand
performance for SP-MZ when a released SGI MPT run-
time library (mpt1.11r) was used. In fact, on 256 pro-
cessors, the InfiniBand result is 40% slower than NU-
MAlink4, but the InfiniBand performance improves as
the number of CPUs increases. We used a beta version
of the MPT library (mpt1.12b) and reran some of the
data points. These results are also included in Fig. 12
for SP-MZ. As we can see, the beta version of the li-
brary produced InfiniBand results that are very close in
performance to the NUMAlink4 results. As it turned
out, the InfiniBand MPI performance is sensitive to the
settings for a few SGI MPT parameters that control
how MPI accesses its internal message buffers. Specif-
ically, we had to increaseMPI_BUFS_PER_HOSTand
MPI_BUFS_PER_PROCby a factor of eight from the
default values in order to obtain the good performance.

4.6.3 Molecular Dynamics

For the molecular dynamics simulation code, the nearly
perfect scalability on one node that was shown in Sec-
tion 4.1.3 continues when it is run on multiple nodes.
(See Table 6.) The small penalty evident on the large
CPU count runs is at least in part due to a sharing of
resources with system software. For theP = 484 run,
no multinode costs are apparent. Given the insignificant
communication costs of the test, it is not surprising that
the InfiniBand interconnect does nearly as well as NU-
MAlink4. (The InfiniBand connection limitations dis-
ucssed in Section 2 prevented us from completing runs
at 1536 and 2040 CPU’s.) Note that the communication
costs could increase if the simulation were run for long
durations and the workload becomes unbalanced.

Molecular Dynamics
Wallclock time/step (sec)

P nodes # particles NL4 IB

256 1 16,384,000 20.31 n/a
484 3 30,976,000 20.33 20.47

1024 2 65,536,000 21.96 22.47
1536 3 98,304,000 21.70 –
2040 4 130,560,000 21.61 –

Table 6.Performance of molecular dynamics code
using NUMAlink4 (NL4) and InfiniBand (IB) in-
terconnection.

12

4.6.4 INS3D

Table 7 presents performance results of the
MPI+OpenMP code on multiple BX2b nodes. The first
column shows the total number of CPUs, the second
column contains total execution times for one BX2b
node. The remaining columns contain the runtime
using two and four BX2b nodes with NUMAlink4 and
InfiniBand interconnects respectively.

INS3D hybrid MPI+OpenMP
1 Node 2 Nodes 4 Nodes

P NL4 IB NL4 IB

36 (36×1) 1162 1230 1352 1253 1418
144 (36×4) 494 533 623 576 710
288 (36×8) 429 470 542 477 600
504 (36×14) 380 410 481 418 532

Table 7. Performance of MPI+OpenMP version
of INS3D, comparing intranode with NUMAlink4
(NL4) and InfiniBand (IB) internode connections.

Comparing column 2 of Table 7 with column 3 of Ta-
ble 3 we see that the single BX2b node MPI+OpenMP
runtime is approximately 40–50% longer than the
INS3D-MLP runtime. This is caused by the overhead
of master-worker communication. Examining NUMA-
link4 times in columns 3 and 5 of Table 7 we observe a
5–10% increase in runtime from one BX2b node to two
nodes and an 8–16% increase using four nodes. An ad-
ditional 14–27% increase in runtime is observed when
using InfiniBand interconnects instead of NUMAlink4.
We observe that the penalty in runtime, incurred when
using multiple nodes, increases as the number of proces-
sors is increased. Obviously, the master-worker commu-
nication approach stresses the interconnect; we would
expect that the reduced communication in the point-to-
point version of INS3D would see lower penalties for
both multinode execution and for the use of InfiniBand.

4.6.5 OVERFLOW-D

Table 8 presents results of performance experiments
conducted on multiple BX2b nodes. The column de-
noted as “# of Nodes” refers to the number of BX2b
nodes used. The communication and execution times are
reported for the same runs via both NUMAlink4 and In-
finiBand interconnects, using the Intel Fortran compiler
8.1.

The total execution times obtained via NUMAlink4
are generally 5–10% better; however, the reverse ap-
pears to be true for the communication times. Up until
P = 508, we did not find a pronounced change in the
execution timing for the same total number of processors
distributed across multiple nodes via NUMAlink4 or In-
finiBand interconnection, in comparison to the corre-

OVERFLOW-D
NUMAlink4 InfiniBand

of comm exec comm exec
P Nodes (sec) (sec) (sec) (sec)

64 (64×1) 2 0.14 2.2 0.15 2.4
64 (64×1) 4 0.09 2.3 0.10 2.3

128 (128×1) 2 0.23 1.4 0.23 1.5
128 (128×1) 4 0.10 1.3 0.11 1.4
256 (256×1) 2 0.18 1.1 0.17 1.2
256 (256×1) 4 0.17 1.1 0.15 1.1
508 (508×1) 2 0.16 1.0 0.15 1.1
508 (508×1) 4 0.14 0.9 0.12 1.0
1016 (508×2) 4 0.14 1.4 0.17 1.9
1464 (366×4) 3 0.25 2.7 0.19 2.9
1972 (493×4) 4 0.17 2.1 0.13 2.1
2032 (508×4) 4 0.16 2.1 0.12 2.3

Table 8. Performance of OVERFLOW-D across
multiple BX2b nodes via NUMAlink4 and Infini-
Band interconnection.

sponding data obtained within a single node. The overall
performance scalability is rather poor for the test prob-
lem used in these experiments, and is adversely affected
by the granularity of the grid blocks and increased over-
head for large processor counts. In fact, as seen from
Table 8, the execution timing increases forP > 508.

It should be noted that the shared I/O file system
across multiple nodes that was available at the time of
this study was much less efficient than the one used
within a single node. Since the execution time includes
the overhead for some minor I/O activities, albeit negli-
gible for a single node, it is negatively affected to some
extent for multiple nodes.

For the same total number of processors, the commu-
nication time for OVERFLOW-D across multiple nodes
is less than the corresponding run on a single node (see
Tables 4 and 8). We speculate that this may be due to
the availability of more bandwidth for communication
in the multi node system. The bandwidth plays a more
crucial role in the execution time than the latency for the
communication pattern in our application.

5 Summary and Conclusions

Our benchmarking on the Columbia supercluster
demonstrated several features about single-box SGI Al-
tix performance. First, the presence of NUMAlink4 on
the BX2 nodes provides a large performance boost for
MPI and OpenMP applications. Furthermore, when the
processor speed and cache size are enhanced (as is the
case on those nodes we call BX2b’s), there is another
significant improvement in performance. As was the
case on the SGI Origins, process and thread pinning con-

13

tinues to be critical to performance. Among the four
versions of the Intel compiler that we tested, there is no
clear winner—performance seems to vary with applica-
tion.

When multiple Altix nodes are combined into a ca-
pability cluster, both NUMALink4 and InfiniBand are
capable of very good performance. While the HPC
Challenge benchmarks showed some potential perfor-
mance problems with InfiniBand, those results were not
seen with either the NPBs or two of the applications we
tested. In the case of the HPC Challenge benchmarks
and the master-worker version of INS3D, we observed
that contention in the interconnect increased execution
time substantially. Thus, careful attention should be paid
to the choice of communication strategy. With a suitable
choice, we should be able to scale some important ap-
plications to 2048 processors.

For jobs using more than 2048 processors, InfiniBand
is a necessity. It is particularly encouraging that there
was no significant penalty for using InfiniBand versus
NUMAlink4 in applications on the maximum configu-
ration tested. However, because of the limitations of the
InfiniBand hardware, doing so will require that a multi-
level parallel programming paradigm be used.

In future work, we will explore scaling beyond 2048
processors. We will also investigate the causes of scal-
ing problems that we observed with OpenMP and exper-
iment with the SGI SHMEM library.

Acknowledgements

We would like to thank Bron Nelson, Davin Chan,
Bob Ciotti, and Bill Thigpen for their assistance in using
Columbia, and Jeff Becker and Nateri Madavan for valu-
able comments on the manuscript. Rob Van der Wijn-
gaart played a critical role in developing the multi-zone
NPBs.

References

[1] D. Bailey, J. Barton, T. Lasinski, and H. S. (Eds.). The
NAS Parallel Benchmarks. Technical Report NAS-91-
002, NASA Ames Research Center, Moffett Field, CA,
1991.

[2] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart,
A. Woo, and M. Yarrow. The NAS Parallel Benchmarks
2.0. Technical Report NAS-95-020, NASA Ames Re-
search Center, Moffett Field, CA, 1995.

[3] J. Borrill, J. Carter, L. Oliker, D. Skinner, and R. Biswas.
Integrated performance monitoring of a cosmology ap-
plication on leading hec platforms. InProc. 34th Inter-
national Conference on Parallel Processing, pages 119–
128, Oslo, Norway, June 2005.

[4] P. G. Buning, D. C. Jespersen, T. H. Pulliam, W. M.
Chan, J. P. S. amd S. E. Krist, and K. J. Renze. Overflow

user’s manual, version 1.8g. Technical report, NASA
Langley Research Center, Hampton, VA, 1999.

[5] M. J. Djomehri and R. Biswas. Performance analysis
of a hybrid overset multi-block application on multiple
architectures. InProc. High Performance Computing -
HiPC 2003, 10th International Conference, Hyderabad,
India, December 2003.

[6] M. J. Djomehri, R. Biswas, and N. Lopez-Benitez. Load
balancing strategies for multi-block overset grid applica-
tions. InProc. 18th International Conference on Com-
puters and Their Applications, pages 373–378, Hon-
olulu, HI, March 2003.

[7] Effective Bandwidth Benchmark.
http://www.hlrs.de/organization/par/services/models/
mpi/b eff/.

[8] HPC Challenge Benchmarks. http://icl.cs.utk.edu/hpcc/.
[9] InfiniBand Specifications.

http://www.infinibandta.org/specs.
[10] H. Jin and R. Van der Wijngaart. Performance char-

acteristics of the multi-zone NAS Parallel Benchmarks.
In Proceedings of the International Parallel and Dis-
tributed Processing Symposium (IPDPS 2004), Santa Fe,
NM, April 2004.

[11] C. Kiris, D. Kwak, and W. Chan. Parallel unsteady tur-
bopump simulations for liquid rocket engines. InSuper-
computing 2000, November 2000.

[12] C. Kiris, D. Kwak, and S. Rogers. Incompressible
Navier-Stokes solvers in primitive variables and their ap-
plications to steady and unsteady flow simulations. In
M. Hafez, editor,Numerical Simulations of Incompress-
ible Flows. World Scientific, 2003.

[13] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini,
W. Yu, D. Buntinas, P. Wyckoff, and D. Panda. Perfor-
mance comparison of MPI implementations over Inifin-
Band, Myrinet, and Quadrics. InProceedings of SC’03,
Phoenix, AZ, November 2003.

[14] R. Meakin and A. M. Wissink. Unsteady aerodynamic
simulation of static and moving bodies using scalable
computers. InProc. 14th AIAA Computational Fluid
Dynamics Conference, Paper number 99-3302, Norfolk,
VA, 1999.

[15] NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB.

[16] D. C. Rapport.The Art of Molecular Dynamics Simula-
tion. Cambridge University Press, 1995.

[17] R. Strawn and M. Djomehri. Computational modeling
of hovering rotor and wake aerodynamics.Journal of
Aircraft, 39(5):786–793, 2002.

[18] J. R. Taft. Achieving 60 gflop/s on the production cfd
code overflow-mlp.Parallel Computing, 27(4):521–536,
2001.

[19] Top500 Supercomputer Sites. http://www.top500.org.
[20] Voltaire ISR 9288 InfiniBand switch router.

http://www.voltaire.com/documents/9288dsweb.pdf.

14

